The k-fractional logistic equation with k-Caputo derivative

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Onmemo-viability of fractional equations with the Caputo derivative

*Correspondence: [email protected] Department of Mathematics, Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, Białystok, 15-351, Poland Abstract In this paper viability results for nonlinear fractional differential equations with the Caputo derivative are proved. We give a necessary condition for fractional viability of a locally closed set with respect to a nonli...

متن کامل

Fractional Hamilton formalism within Caputo ’ s derivative

In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canoni-cal Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange form...

متن کامل

Fractional variational problems with the Riesz-Caputo derivative

In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for sever...

متن کامل

ON GENERALIZED k-FRACTIONAL DERIVATIVE OPERATOR

The main objective of this paper is to introduce k-fractional derivative operator by using the definition of k-beta function. We establish some results related to the newly defined fractional operator such as Mellin transform and relations to khypergeometric and k-Appell’s functions. Also, we investigate the k-fractional derivative of k-Mittag-Leffler and Wright hypergeometric functions.

متن کامل

Asymptotical Stability of Nonlinear Fractional Differential System with Caputo Derivative

This paper deals with the stability of nonlinear fractional differential systems equipped with the Caputo derivative. At first, a sufficient condition on asymptotical stability is established by using a Lyapunov-like function. Then, the fractional differential inequalities and comparison method are applied to the analysis of the stability of fractional differential systems. In addition, some ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure Mathematical Sciences

سال: 2015

ISSN: 1314-7560

DOI: 10.12988/pms.2015.4818